ATC M-200
GSCP over IP
ТЕХНИЧЕСКОЕ ОПИСАНИЕ M200.5100.000-TO.02.GSCPoIP RC 11102016

Авторское право

Авторское право © 2016. Издано компанией МТА.

Содержимое данного издания не может быть воспроизведено целиком или частично, переписано, помещено в систему поиска информации, переведено на любой язык или передано в любой форме при помощи любых средств, электронным, механическим, магнитным, оптическим, химическим, путем фотокопирования. вручную или любым другим способом, без предварительного письменного разрешения МТА.

Издано компанией МТА. Все права защищены.

Непризнание иска

МТА не принимает на себя ни в какой форме ответственность за применение или использование любого изделия или программного обеспечения, описанного здесь. Также она никоим образом не передает лицензию на свои патентные права, а также на патентные права третьих сторон. Кроме того, компания МТА сохраняет право вносить изменения в любые описанные здесь изделия без дополнительного уведомления. Информация в этом руководстве может быть изменена без специального уведомления.

Товарные знаки

Фирменные названия и наименования изделий, упомянутые в данном издании, используются лишь в целях идентификации и могут принадлежать своим законным владельцам.

1.	BBE	сдение	
	1.1.	Назначение документа	
	1.2.	Аудитория	
2.	ОБІ	ЦАЯ ИНФОРМАЦИЯ	5
3.	HAC	СТРОЙКА VOIP ИНТЕРФЕЙСА	6
	3.1.	Реализация	6
	3.2.	НАСТРОЙКА ИНТЕРФЕЙСОВ ЕТН	7
	3.3.	Настройка PROMG	
	3.4.	Запуск	
	3.5.	Настройка виртуальных потоков E1 (PCM IP)	9
4.	HAC	СТРОЙКА ИНТЕРФЕЙСА GSCPOIP	
	4.1.	Создание GSCPoIP	
	4.2.	ПРИВЯЗКА К ВИРТУАЛЬНОМУ ПОТОКУ	
	4.3.	Настройка GSCPOIP	
	4.3.1	I. Параметры подключения	
	4.3.2	2. Параметры RTP	
5.	КОМ	МАНДЫ УПРАВЛЕНИЯ	
П	рилож	кение а - примеры конфигурации	

1

1.1. Назначение документа

Документ описывает процедуры инсталляции и конфигурирования интерфейса межмодульного взаимодействия на оборудовании М-200 производства компании МТА, Санкт-Петербург.

1.2. Аудитория

Документ предназначен для специалистов, занимающихся пуско-наладочными работами и сервисным обслуживанием оборудования М-200.

Общая информация

Для организации межмодульного взаимодействия специалистами компании МТА был разработан протокол межмодульного взаимодействия **GSCP**. Реализация **GSCP** на базе технологии Ethernet называется **GSCPoIP**.

Протокол предназначен для объединения по TCP/IP сетям двух и более модулей М-200 и обеспечивает следующие черты функционирования станции:

- Э Единая, централизованная система управления и конфигурирования АТС
- Э Доступ оператора к любому модулю через любой
- Э Централизованная система тарификации телефонных разговоров
- Э Централизованная система мониторинга и визуализации работы станции
- Гибкая, не требующая вмешательства обслуживающего персонала система коммутации голосовых трактов и трактов передачи данных
- «Умная», самовосстанавливающаяся система маршрутизации вызовов

Протокол обеспечивает:

- Произвольное количество разговорных каналов (зависит от типа оборудования) на каждый межмодульный стык;
- Систему межмодульного обмена служебными сообщениями;
- Систему тарификации, мониторинга, визуализации работы АТС;
- Э Межмодульную маршрутизацию вызовов;
- Систему идентификации оператора АТС (система безопасности);
- Функционирование СОРМ;
- Систему удаленного доступа к станции ;

Основные черты протокола:

- Э Универсальность поддерживается всем оборудованием, производимым в компании МТА;
- Надежность гарантированное прохождение служебных сообщений, высокое качество соединения, возможность резервирования и дублирования каналов;
- Гибкость легкая в настройке система позволяет реализовать проект практически любой сложности;
- Простота самовостанавливаемая и самонастраиваемая система не требует специальных знаний от персонала АТС;

Настройка VoIP интерфейса

3.1. Реализация

Внимание! Только для коммутаторов серии СС и IP-ATC. На плате К-87 и в коммутаторах MP серии ARM все необходимые настройки сделаны по умолчанию!

VoIP интерфейс M-200 основан на программном комплексе **PROMG**, который, в рамках конфигурации оборудования, представляет, собой **виртуальный ТЭЗ**, размещаемый в конфигурационном пространстве станции.

Виртуальный ТЭЗ PROMG (MG-4):

- 1. Осуществляет непосредственное взаимодействие с физическими интерфейсами Ethernet.
- 2. Выполняет роль драйверов SIP и GSCPoIP для организации внешних и внутренних стыков, использующих технологию VoIP.
- 3. Предоставляет возможность создания до 124 VoIP портов.

Виртуальный ТЭЗ PROMG использует два сетевых интерфейса (MG4 и WAN) блока управления коммутатора серии СС.

Расположение сетевых интерфейсов на панели блока управления (порядок расстановки интерфейсов может быть изменен):

- Интерфейс MG4 работает в сети коммутатора СС. Подключается к блоку коммутации так же, как и ТЭЗы G-04.
- Интерфейс WAN работает в сети IP телефонии. Подключается к сети оператора.

Внимание! По умолчанию в качестве интерфейса WAN используется eth3. Привязка может быть изменена в параметрах виртуальной платы (см. ниже).

В блоке интерфейсов виртуальный ТЭЗ занимает реальное место. В слоте, к которому приписан **PROMG**, не должно быть размещено никаких других ТЭЗов.

Внимание! Слот на блоке интерфейсов (в кассете), который используется под виртуальную плату PROMG, должен быть свободен!

Внимание! При использовании нескольких PROMG будет создано несколько виртуальных ТЭЗ PROMG!

- Максимальное количество слото-мест в коммутаторах серии СС 64.
- Виртуальный ТЭЗ PROMG может быть размещен в любом слото-месте в пределах 1-64.
- Учитывая виртуальность ТЭЗа нет необходимости в наличии реального слото-места. Иными словами, PROMG может быть размещен за пределами кассеты. Так, если блок интерфейсов состоит их одной кассеты (19 слото-мест), PROMG может быть размещен в 20-е место или в любое другое, но не более 64. В этом случае, для правильного отображения в визуальном конфигураторе, нужно выбрать коммутатор MP-128 или MP-256.

3.2. Настройка интерфейсов Eth

Внимание! Только для коммутаторов серии СС и IP-ATC. На плате К-87 и в коммутаторах MP серии ARM все необходимые настройки сделаны по умолчанию!

Привязка виртуального слота к слото-месту в конфигурационном пространстве коммутатора осуществляется путем изменения значения MACADDR (mac aдрес) для интерфейса Eth2 (MG-4).

Допустим, имеется коммутатор MP-32 CC. Этот коммутатор имеет 8 плат G-04. 9-ой платой будет виртуальная плата PROMG.

Необходимо подключиться к коммутатору с помощью ssh и внести изменения в файл /ATS/SYSCONFIG/ifcfg-eth2.

В файле /ATS/SYSCONFIG/ifcfg-eth2 изменяем MAC адрес:

- Для 9-ой платы MAC-адрес eth2 должен быть **00:00:аа:аа:09:09** (для 8-ой он был бы 00:00:аа:аа:08:08, для 10-ой был бы 00:00:аа:аа:0а:0а и т.п.)
- Изменять необходимо два последних октета. Остальные должны иметь значения 00:00:аа:аа.

```
DEVICE=eth2
BOOTPROTO=static
MACADDR=00:00:aa:aa:09:09
ONBOOT=yes
METRIC=5
```

MII_NOT_SUPPORTED=no USERCTL=no RESOLV_MODS=no IPV6INIT=no IPV6T04INIT=no

Внимание! *IP* адрес для этого интерфейса намеренно не прописан!

По умолчанию, в качестве интерфейса для подключения к сети VoIP используется Eth3 (WAN). Настройка производится в файле /ATS/SYSCONFIG/ifcfg-eth3.

3.3. Настройка PROMG

Внимание! Только для коммутаторов серии СС и IP-ATC. На плате К-87 и в коммутаторах MP серии ARM все необходимые настройки сделаны по умолчанию!

Настройка PROMG производится в файле /ATS/SYSCONFIG/MasterOfPuppets.conf.

Строка, соответствующая настройкам программы PROMG:

```
process PROMG exefile "/ATS/BIN/PROMG" sync PROMG_1 cmdline "-devlan eth2 - devwan eth3 -core0 1 -count 1 -d"
```

-devwan ethN - имя сетевого интерфейса для WAN (тот интерфейс что смотрит в сеть ip-телефонии. Рекомендуется eth3). Для коммутаторов серии CC можно установить значение eth3 (по умолчанию) или eth0 (управление и VoIP на одном интерфейсе).

-count N – количество исполняемых PROMG.

Внимание! Попытка превысить доступное согласно лицензии количество PROMG приведет к неработоспособности оборудования!

3.4. Запуск

После внесения изменений в соответствующие файлы подсистема VoIP M-200 должна быть перезапущена командой 'sudo m-200 siprestart'.

Наличие в системе запущенных виртуальных плат PROMG можно проверить, подключившись терминалом на порт 33333 и введя команду 'info'.

```
-bash-3.2$ telnet localhost 33333
Trying 127.0.0.1...
Connected to ATS_M-200 (127.0.0.1).
Escape character is '^]'.
info
[2015-01-13 13:44:27] >info
[2015-01-13 13:44:27] PRODRIVER Motor 6.10.35 (gcc 4.9.2)
[2015-01-13 13:44:27] ok
```


В данном примере запущена одна плата PROMG (согласно лицензии), которая «размещена» в слоте 9.

3.5. Настройка виртуальных потоков E1 (PCM IP)

Внимание! Только для коммутаторов серии СС и IP-ATC. На плате К-87 и в коммутаторах MP серии ARM все необходимые настройки сделаны по умолчанию!

В результате описанных выше настроек получается 4 виртуальных потока E1, расположенных согласно настройкам PROMG. Так, если MAC-адрес был прописан 00:00:аа:аа:09:09, настройке подлежат потоки 33, 34, 35, 36 ((9-1)*4 +1=33 и т.д.).

🍳 Модуль Оператора	а АТС М-200 - Конфи	гуратор	
<u>Ф</u> айл <u>К</u> омплектност	ть АТС <u>А</u> бонентский	і отдел <u>Т</u> ранзитный о	тдел <u>В</u> ид <u>С</u> правка
1 🚔 🖬 🖬 🖿	🛍 🖪 💷 🖷 🛛	u o o 🚦	
ATC	Модуль іМР64 - #127	7	Параметры
ATC	IP IP IP	IP	Параметр Значение
			Параметр Значение
			Тип РСМ_ІР

Потоки (минимум один) должны быть настроены на тип РСМ_ІР.

```
PCM [33] { PROFIL = 57 // TYPE PCM = PCM_IP

}

PCM [34] { PROFIL = 57 // TYPE PCM = PCM_IP

}

PCM [35] { PROFIL = 57 // TYPE PCM = PCM_IP

}

PCM [36] { PROFIL = 57 // TYPE PCM = PCM_IP

}

.....
```



```
PROFIL [57] { TYPE = PCM_IP
}
```

В случае, если используется более чем один PROMG, количество виртуальных потоков соответственно увеличивается. Так, если MAC-адрес был прописан 00:00:аа:аа:09:09 и –count 3, настройке подлежат потоки 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44.

Настройка интерфейса GSCPoIP

4.1. Создание GSCPoIP

Настройка VoIP -транков производится с помощью виртуальных VoIP портов.

- Тип виртуального контейнера должен быть **AIR_INT_IP**.
- Количество портов в интерфейсе задается параметром **nAmountPort**.
- Порты не настраиваются.

	Параметры	аметры		
IP	Параметр	Значение		
			_	
	Параметр	Значение	_	
	Параметр Тип	Значение AIR_INT_IP	_	
	Параметр Тип IPPcmNo	Значение AIR_INT_IP 33		

4.2. Привязка к виртуальному потоку

Виртуальные потоки должны быть настроены согласно данной инструкции (п. 3.4.).

GSCPoIP интерфейс должен быть привязан к одному из виртуальных потоков. За привязку отвечает параметр **IPPcmNo**.

INT

Внимание! Для платы К-87 привязка к потоку не настраивается - **IPPcmNo = -1**.

```
AIR [1] { PROFIL = 3 // AIR TYPE = AIR_INT_IP
}
....
PROFIL [3] { TYPE = AIR_INT_IP
IPPcmNo = 34
}
```

4.3. Настройка GSCPoIP

4.3.1. Параметры подключения

nAmountPort - Число портов в интерфейсе (до 124);

localIP - Локальный IP-адрес;

remoteIP - Удалённый IP-адрес;

nLocalUDPPort - Локальный UDP порт;

nRemoteUDPPort - Удалённый UDP порт;

4.3.2. Параметры RTP

codec - кодек:

- 3 (GSM6.10),
- 8 (g711 alaw);

nJitterMin - мин. размер Jitter-буфера;

nJitterMax - макс. размер Jitter-буфера;

nJitterQuantum - размер RTP-пакета для g711 alaw (мс);

tmRtpGetStat - время запроса RTP статистики (мс);

fSoftEchoCan - активирует алгоритм программной эхокомпенсации (сильно нагружает процессор);

Программная эхокомпенсация использует существенное количество ресурсов процессора.

nSoftEchoTailMs - длинна хвоста эхо (мс) с которым борется алгоритм программной эхокомпенсации (кратно 16-ти и не более 128 мс);

Внимание! Для ТЭЗ К-87 использование программного эхоподавления не предусмотрено.

Внимание! На коммутаторах серии СС можно использовать до 32 эхоподавителей на одну лицензию PROMG. В случае, если эхоподавление на канале включено, но свободных эхоподавителей не осталась, RTP трафик будет транслироваться без обработки.

Команды управления

lintable - выводит информацию о текущем состоянии GSCPoIP интерфейсов:

>lintable
INT_IP LINK 770 ON to mod = 101, link = 769
INT_IP LINK 771 ON to mod = 102, link = 769
Done

LINK 770 – номер GSCPoIP интерфейса. Нумерация AIR контейнеров ничинается с 769 – AIR[1] = 769, AIR[2] = 770 и т.д.

ПРИЛОЖЕНИЕ Примеры конфигурации

{

Коммутатор + 2 МАЛ объединяются по GSCPoIP.

```
CONF
    PROFIL = 1 NAME =""
    MODULE [1]
    {
        TYPE = MODULE_MAL NAME = "" PROFIL = 2
         SLOT [1-13] { PROFIL = 3
                                               // SLOT TYPE = SLOT_A16
             PORT [1-13] { PROFIL = 3 // SLOT TYPE = 3
PORT [1-16] { PROFIL = 4 // SIG = SIG_EXT
                 GROUP = 1
                 NUMBERA = "100+"
             }
         }
        AIR [1] { PROFIL = 5
                                            // AIR TYPE = AIR_INT_IP
    }
    MODULE [2]
    {
         TYPE = MODULE MAL NAME = "" PROFIL = 6
        SLOT [1-16] { PROFIL = 3
                                               // SLOT TYPE = SLOT_A16

      r [1-16] { PROFIL = 3
      // SLOT TYPE = 3

      PORT [1-16] { PROFIL = 4
      // SIG = SIG_EXT

                 GROUP = 1
                 NUMBERA = "308+"
             }
         AIR [1] { PROFIL = 7
                                           // AIR TYPE = AIR_INT_IP
         ł
    }
    MODULE [127]
    {
         TYPE = MODULE_MP NAME = "" PROFIL = 8
         PCM [33] { PROFIL = 9
                                                // TYPE PCM = PCM_IP
         PCM [34] { PROFIL = 9
                                                // TYPE PCM = PCM_IP
         PCM [35] { PROFIL = 9
                                                // TYPE PCM = PCM_IP
        PCM [36] { PROFIL = 9
                                               // TYPE PCM = PCM_IP
        AIR [2] { PROFIL = 10
                                              // AIR TYPE = AIR_INT_IP
        AIR [3] { PROFIL = 11
                                              // AIR TYPE = AIR_INT_IP
         ł
    PROFIL [1] { TYPE = AIR_COMMON
        sModulePlaces = "1yzOIO2JLQFXW5Q8BNcju=7zAtQ1+5w=+E60+++"
    PROFIL [2] { TYPE = AIR_MODULE
        wide = 13
```



```
}
PROFIL [3] { TYPE = SLOT_A16
ł
PROFIL [4] { TYPE = SIG_EXT
}
PROFIL [5] { TYPE = AIR_INT_IP
   IPPcmNo = -1
   nAmountPort = 31
   remoteIP = "192.168.0.10"
}
PROFIL [6] { TYPE = AIR_MODULE
   wide = 16
}
PROFIL [7] { TYPE = AIR_INT_IP
   IPPcmNo = -1
   nAmountPort = 31
   remoteIP = "192.168.0.10"
}
PROFIL [8] { TYPE = AIR_MODULE
   wide = 64
}
PROFIL [9] { TYPE = PCM_IP
}
PROFIL [10] { TYPE = AIR_INT_IP
   IPPcmNo = 35
   codec = 8
   nAmountPort = 31
   remoteIP = "192.168.0.102"
}
PROFIL [11] { TYPE = AIR_INT_IP
   IPPcmNo = 36
   codec = 8
   nAmountPort = 31
   remoteIP = "192.168.5.101"
}
GROUP [1] { ROUTE = 1 }
ROUTE [1] { NAME = ""
   RECORD "100" - "563" LOCAL
}
```

}